THE CEREBRAL FESSURES OF THE ATLANTIC U ALRLS.

By Pierre A. Fisif. of Comull Luirersit!, Ihhucu, Merr Yomk.

Through the courtesy of the officials of the I'. S. National Museum there were sent to me, for examination and description, two walrus brains obtained for that institution hy R. Stein at North Greenland. August 10, 1901. The specimens had been preserved in a fluid of which formaldehyde was apparently a constituent. In both brains the cerebellum had been removed by a section through the brain stem at the level of the junction of the optic thatami with the mesencophal. so that in the process of removal the epiphysis (pineal body) remained attached to the cerebellar portion: the two hemicerebrums were then divided by a median section.

The two hrains differed quite markedly in size, the one hoing hut slightly more than half as large as the other. The smather of the two hains had suffered quite material matilation duringe its remoral from the cranium, a considerable portion of the brain subtance baving been lost from the right hemicerehrom. In the process of latdening all of the hemicerehrums had underene eonsiderahle distortion. The mesal surface in each case. instead of being relatively flat, Wat very distinctly ronvex in its cephalo-randal direction, and on this account the gyres (convolations) and fissures of the lateral aspect were closely crowded together. rendering the study of these parts more diflicult. On this aceomet, abo, it wats decided not to photograph the hrains. as the redationship of the parts would be misleading and temel to canse error and confusion to the ohserver. The figures which illastrate this article were sketched free-hand, the parts at the same time being manipulated so as to bring them as meaty as possible to their nomal relations. By carefully verifying each part on the hation itself as the drawing progressed, it is heliered the figures may he atecepted as representing with approximate accuracy the mormal relationship of the more important parts.

Weight. Thrmer" gives the weights of three walrus hams "after

[^0]the removal of the membames and hardening in spirit." Brain A weighed et onnces 7 drams :woirdupois: B 13辛 ounces, and C 26 ounces. In the specimens examined by me only the larger of the two brains wats weighed, all of the membanes having heen removed from the erephom. but not from the rerehellum and the bain stem adja(ant to it, the pias and arachoid still adhering. The total weight of the hain under these eonditions was $2!$ onnces aroirdupois. The weight of the cerehrum without the pia wan $2 \sum_{3}$ ounces. leaving a weight of $i^{\frac{1}{4}}$ onneses for the cerebellum, ohlongatat, mesencephat, and "piphysis, the latter having adhered to the cerehelhm. Turner has called attention to the remarkable size and leat-hike or pryiform shape of the epiphrsis (pineal hody) in the walrus, hat does not mention its weight. In my seremen it weighed 1 dram, 1 seruple, and 3 grains, or a total of so grains.

FINSTRES ANI (IYTRES.

The olfactory tissure is scarcely represented; a slight, short depression at the attachment of the olfactory peduncle is all that can be found. The olfactory hulbs were missing, hut the peluncles have about the same size th those in Callorhinus and Monachus, and are relatively much smaller than in the bear.

The rhinal tissure is well dereloped. The olfactory peduncle for most of its length lies in this fissure. At the base of the peduncle the rhinal swerves obliquely in a caudo-lateral direction and is lost in the depthe of the sytviam. It reaches a considerable depth under the preslyian lobe (wh-operculum).

The post rhinal is represented upon the rentral surface as a short spur or outerop of the submerged postica, resembling in this respect the condition found in Zatophus. (allorhinus, and Monachus. In L'sus and Phoeathe pest rhinal is a continuation of the rhinal caudad of the sylviatn.

Lateral drepect. - The sylvian points in the usual dorso-candal direction on the lateral surface. It is a straight fissure, and does not bifurcate at ite end. It measures (5) millimeters in length, and has a depth ranging from en to 30 millimeters. It is the depest fissure of the brain, extending to withins. millimeters of the lateral ventricle (paracele). On opening the sylvian fissure one sees a fiswure, the presupersylvian. quite near the lateral surface of the hemicerobrum. The two tissures run nearly parallel with each other, but diverge dorsally where the presupersylvian hecomes an ordinary sufface fiswure. From three to six minor sulmerged fiswures are found in the cephalic wall of the sylvian. These pass upward toward the surface, and some have a superficial connection with the presupersylam, but the majority usually do not appear upon the lateral aspeet of the hrain. Submerged minor fissures also appear in the caudal wall of the sylvian. These in general have the
same form and direction as those in the eephalie wall. One strikinge exception with regard to the direction of the submered fiswres 1 have called attention to in a preceding paper." This fisemre I hatrompared with the postica. It eorresponds to a fissure of the same namo in the feline brain, but differs in this instance. in that it is submerged in the sylvian. Ursus, Zalophus, (allorhinus, and Phoca also show this peculiarity. The postica differs from the other submerged fissures of the sylvian by extending in a direction at nearly right angles to them, that is, dorso-rentrally, paralleling approximately for a short distance that of the sylvian itself.

The true insula is but scarcely developed in the walpus, and appears merely as a slight elevation in the bottom of the sylvian fimure. The submerged gyre formed by the postica fissure may easily be mistaken for a well-dereloped insula, as it has approximately a suitable location. Whether the submerged gare later forms at coser relationship with the true insula, and is the precursor of the more complicated insulat found in the higher forms, is a ruestion that can not be answored here. Ziehen ${ }^{b}$ deseribes in the walrus a well-developed insula divided hy fissures into three gyres.

Superylfiom tixsure.-This tissure arches around the distal end of the sylvian in the usual way. Its frontal portion the presupersyl-vian-passes close to the sylvian, converging gradually until near the base of the sylvian the presupersylyan becomes a submerged fissure, cropping out later to a slight extent upon the rentral sulface. There is no evidence of a shallow of radum indicating a separation of the presupersylvian and the supersybian proper as sometimes oceurs in the fur seal. In Phoca the two fissures are entirely distinct and are withont evidence even of a superficial connection. In the walrus the two fissures are continuous with each other. as in the dog and hear, and the ditlerentiation is therefore an ahitrary one.

Perhaps the most pazaling feature regarding the fissures of this spectmen of the walrus hath is the reationship of the supersybian with the postwpersylvian. The conditions appear very much as in the brain of the sea lion (Kalophus). The apparent postsupersyian is four times as fir remored from the sybian as the prenperylyian. In this wide area hetween the sylvian and postsupersybian Zalophus shows a few minor fissures extending horizontally. In the walrus there are also minor fisimes present in this area but ako a fairly welldeveleped fissure nearly rertical in its direction, almost commerting with the supersylvian on the right hemicerehrum, but fotally disconnected on the left hemicerebrum. This vertical tissure secms to be too well developed to be clased with the minor fissures and its position and relations suggest the possibility of its heing a poorly developed

[^1]and diseomertof postsupersylvian tissure. In the cat there is usually a discomeretion between the supersylvian and postsupersylvian, and ocrasionally this diseonnection is seen in Callorhinus and Monachus. On the other hand, the vertical fissure is much shallower than the supersylvian, and the latter is continuous with a deep and welldeveloped fissure apparently eoresponding with the postsupersybian of the sea lion, Phoea. beare, and dog.

The matter is further compliated by the fact that if this be regarded as the postsuperylvian. it is longer than matal, since it passes down from the lateral surfare and appears upon the rentral apert, and lies, in part, in the situation generally ofropied by the ectolateral fissure. The ertolateral generally occupies a position between the postsupersylvian and lateral fissures; sometimes it commects with the lateral, but rarely with the postsuperoybian, although such a ronnection wats once olserved by me on the hemicerebrum of ayoung fur seal. The exammation of a number of brams shows that the ectolateral is a more variable and inconstant fissure than the postsmpersybian, and in the present sereimen of the walrus bran it seems safer to infer that the postsmersylyan and ectolateral have ran together to form a long and continuons fissure and that the rertical fiswme above mentioned is an ummatly well-developed minor fissure. In the sea lion, where this region is so similar to that of the walrus, the postsmpersylvian is a shorter fissure and is entirely discomected from the ectolateral.

The sylvian g!yre is that arch-like portion of the eortex around the sylvian disume included within the boundary line formed by the supersylvian and pre- and post-supersylvian fissures. The cephatic limb of the gyre is narrow and completely submerged in the ventral third of the slyian fissure. The caudal limb has a much greater area, being easily fom times as wide as the cephatic. A few minor fissures branch out from the sylvian into this frontal limb. The caudal limb has a greater momber of these fissures, and one in particular is developed to such an extent as to suggest the possibility of its representing the postsupersylian.

Lateral fissurre.-This fissure is unequally developed on the two bemicerebrums. The well-defined arch which it forms in some carnivorons and seal brains is not well represented in the walrus. On the left hemicerebrum it is apparently an interrupted fissure; a pli de phessutfe or fold of cortex sparates it a little in front of the level of the sylvian. From this point on it arehes forwad and downward. Caudally it does not extend beyond the level of the candal end of the supersylvia. ()n the right hemicerebrum, instead of arehing in a candal direction it cxtends toward amel nearly reaches the mesal surface. A shont fissure having the direction the lateral should take is separated from the lateral proper by a narow pli de perswete. The lateral lissure of the sea lion accords quite closely with that of the walrus, in
that its eephalic portion is much hetter dereloped than the caudal. In Ursus, Callorhinus, Phoca, and Monachus, on the other hand. the lateral is the longest fissure of the hrain.

Ansate fissure.-No distinct line of separation exists in the watrus between the ansate and the lateral, and the separation into individual fissures is therefore an arbitrary one. A like condition exists in the sea lion, hear, and dog. In Phoca, Callorhimus, Monachus, and the cat some differentiation exists.

Cormal fissure- - In the left hemicerebrum of the wahrus there is no line of demaration hetween the coronal, amsate and lateral fissures, and the three together appear as a long. continuous fiswire reathing over upon the rentral aspect. On the right hemicerchiom the eormal is an independent tissure, being separated from the ansate hey a pli de pessige or isthmus if millimetors in width. On eath hemisphere the extent of the coronal upon the rentral aspect is quite remarkable. It reaches nearly to the rhinal fissure just in front of the shlyan. In the bear and sea lion the relation of the coronal, ansate, and lateral fissures is quite similar to that of the walrus.

Supersyluien gyre. This gyte surrounds the sylvian gyre and is bounded on the one side ly the supersylvian and pre- and postsupersylvian fissures: on the other side he the coromat, ansate and lateral fissures, and caudo-ventrally he a fissure which corresponds, in position, to the medilateral fissure. The frontal and dorsal portions of this gyre are well developed, areraging 30 millimeters in width. Numerous minor fissures, having a direction, in general, perpendicular to the boundary fisures, hreak up the supersylian gyre into a mumber of secondary gyres. The caudal timb of the superstrian tapers until it reaches a width of only about 20 millimeters, this sondition probably being due to the extraordinary width (tw millimeter:) of the sylvian gyre in this region.

Ectolateral fisware.-This fiswure has already been disenswed in comnecion with the postsupersyian fissure. In the allied forms studied the ectolateral may or may not extend orer to the rentral surface of the brain. It may or may not connect either with the lateral or postsupersylvian, or lie between the two fissures. The fact that the postsupersylvian does not as a rule reach to any extent upon the rentral aspect makes it seem probable that if the ertolateral is at all represented upon the walrus hrain it has fused with the postenpersylvian. On the left hemicerebrum it reaches nearly to the postrhinal fissure. On the right hemicerebrmon it is shorter and a minor fissure intervenes.

Medilateral fiswere- In some forms the mane is particularly apropriate if it has any comection with the relation of the fiswure to the median and lateral aspects of the hemierephrm. Its situation is never very far from the edger or margin separating these two aspects.

In some cases it lies exactly along this margin (Monachus); in other cases it lies partly upon the lateral and partly upon the mesal surface ((allorhinus). or, as in Zalophns, it may be better seen upon the mesal aspect. In the walrus it is better seen upon the lateral aspect. On the loft hemicerehrum it arches forward to the vertex, but does not quite reach the mesal margin. At this point another fissure 55 millimeters in length continues forward from the mesal margin in the same direction that the medilateral would take if it were longer. The inferemer is that it is properly a portion of the medilateral cut off by a harrow isthmus of the cortex.

Another fissure, 70 millimeters in length, separated (from the fissure just deseribed) by an isthmus 13 millimeters, continues forward and downard upon the mesal appect as far as the eruciate fissure, and has a slight suprerficial connection with it. The appearances indicate that the medilateral on the left hemicerebrum is divided into three por-tions-the caudal portion, 90 millimeters long, located on the lateral surface: the middle portion, 5s millimeters, lying in the margin between the mesal and lateral surfaces; and the cephalic portion, 70 millimeters long, lying entirely upon the mesal aspect. On the right hemicerebrum the medilateral lies upon the dorso-lateral aspect and begins far down on the caudal portion of the hemicerebrum, arching upward and forward as far ats the rertex. It lies very close to the meso-lateral margin but recedes from it gradually until the vertex is reached. It is interrupted at this point ly a cortical isthmus 5 millimeters wide. The cephatic portion of the fissure begins a little mesal to the termimation of the caulal portion. As it areses forward and downward it recedes from the mesal margin and extends to a point a little heyond the cruciate. Turner "figures the medilateral upon the lateral aspect of both hemicerehrums of the walrus as a long uninterrupted fissure, guite close to the mesal margin caudally but receding from it as it arches downward and forward. In my specimen the medilateral is divided into two portions on the right hemicerebrum, both lying on the dorsolateral surface. On the left hemicerebrum it is divided into three portions and the frontal portion lies upon the mesal surface. If it were a continuous fissure it would be hy far the longest tissure of the brain.

Gruciute fissure. This fissure just cuts through the mesal margin and extends only 12 millimeters upon the frontal portion of the lateral surface. (On the left hemicerebrum there is a posteruciate fissure, triradiate in form, represented. The precruciate is not well represented except by a short fissure lying in the mesal margin, which fuses into the cruciate. On the right hemicerehrmm the posteruciate is not represented an a distinct fissure. It may have become fused

[^2]with the medilateral, which at this point has a superticial connection with the cruciate. There is no distinct evidence of a prearmiate upon this hemicerebrum. On this account there is no area that may be correlated in any way with the " Ursine Lozenge" thonght hy Mivart to be of considerable importance in showing a relationship between the seals and the carnivora. In the walrus the cruciate area is quite similar to that of Phoca. In Monachus a slight or rudimentary "Ursine Lozenge" may be detected. In Ursus, Callorhinus, and Zalophus the "lozenge" is well developed. The sigmoid gyre surrounds the frontal portion of the ermeiate fissure.

Superorbitul fissurt. - This fissure oucupies the usual position upon the ventro-lateral surface of the frontal portion of the brain. On the left hemicerebrum it is abont 50 millimeters in length. It arises near the rhinal fissure not far from the hase of the olfactory peduncle. It curves laterally and then back again toward the mesal aspect so that its termination is covered by the olfactory bulb. At the lower third of its course it gives off a short and rery superficial lateral branch. On the right hemicerehrum the fissure is rery similar to that on the left, except that the lateral branch is much smaller.

Lateral gyre (Nediolateral convolution of Turner). - In the present specimen this gre is not well represented upon the caudal portion of the brain. The short length of the lateral fissure brings ahout the unusual condition of having the mediolateral fissure form a portion of the boundary of the supersylvian gyre. In this case therefore the medilateral gyre begins well up toward the rertex in a tapering mamer and gradually becomes wider as it arehes towatd the frontal portion of the brain, attaining a width of from 30 to f $^{(1)}$ millimeters in its widest parts. Like the supersylvian gyre, it contains a number of minor tissures.

Marginal on sargittal gypre- On the left hemicerebrum this is arery narrow gyre and is represented only on the candal portion. It disappears at the rertex. This disappearance is due to the fact that the frontal portion of the intermpted medilateral fissure lies upon the mesal aspect. 'Two or three trates of minor fisames appear in the left saggittal gyre. On the right hemicerebrum the gyre hat a fair width in its candal portion. but becomes narrower. until at the rertex it almost disappears, hut it gradually widens again until in the frontal portion it attains the width of 17 millimeters. On this hemicerelrum there are a number of quite well-developed minor fissures present. which in almost erery instance extend orer upon the mesal surface.

Pre und post sylvidn areas. - The post sylran region comprises the unusually wide caudal limb of the syluian gree, the supersylrian gyre. and the narrow marginal (or sagittal) gyre. The presthan regron includes the rery narrow frontal limb of the sylvian grre, and the wade frontal limbs of the supersylvan and mediateral gyres. On the

Proc. N. M. vol. xxvi-12- $4 t$
right hemicerehrum the marginal gyre should he inchaded. The preshlian has agrater areathan the postsylyan region. The former is made \quad up mostly of the medilateral and supersylvian gyres and the latter hy the sylvian and supersylvian gyres.

MESAL ASPECT.

/lify mam!ul , tisxum. This oecupies the usual position. It is seen arching from the splenium of the callosm around the optic thalamus to the tip of the pyriform or temporal lohe.
(Callosal tissume. As its mame indicates, it is closely related to the callostm, It separates the callosmm from the adjacent cortex. It is deepest in the region of the splenimm and gradually grows shallower matil as it curves around the genn it becomes flush with the surface. On the right hemicerobrum it diverges somewhat from the genu of the callosum.
sylenial fissure.-This fissure is well developed in the walrus and ocerpies the usual position upon the tentorial surface of the brain. It arches upward and forward. curving around the splenimm on the mesal surface. On the right hemierebrum it is a continnous fissure and extends as far as the frontal portion of the callosum; it then extends upward almost vertically nearly to the dorsal margin of the hemicerebrum. On the left hemicerebrum the fissure is interrupted. Its tentorial portion stops at the level of the splenium. The mesal portion begins as two small superficial fiswures converging in a fork-like manner to form the mesal splenial proper. At the level of the genn it terminates in a fork, the lower branch passing nearly to the frontal margin of the hemicerebrum. In neither case did the splenial connect with the erreiate, as described by Turner in his speeimens. On the right hemicerebrum there was a slight indication of a superficial connection. but a subperged grre or buttress shat off any free commmnication.

Ilippocermpal !fyre, nis. gyre lies upon the tentorial surface of the brain. It forms the mos, of the mesal portion of the pyriform or hippocampal lohe. It taket the same general direction as the hippocampal fissure (which forms its sphalic or imer boundary), arehing upward to the level of the sples $1 m$. Its caudal boundary is formed by the tentorial portion of the spheaial fissure. The hippocampal gyre arerages 1.s millimeters in width and possesses a few minor fissures, which in the man are oflishots fro the splenal and have a horizontal durection. On the left hemicerelarum, lyng in the hippocampal gyre just catudal to the splenimm, is a sy shallow suk eorresponding in position to the fissura sublamara , Kükenthal. It is not noticeable upon the right hemicerebrum. is

C'ellosal g!ypro-Thes, as the pame indicates, lies just dorsal to the callosum. It is a narrow gyre and its average width is about 10 mmlli -
meters. Only one or two faint traces of minore dissures are evident. It is the simplent gyre of the Inaln and is contimons with the hippocampal gyre around the splenimm of the catlosum.
 hemicerebrum of the walrus. On the right hemiesrebrum athallow and short vertical fissure may indieate it. On the left hemieerehrum the onty representative of it would be the uppere hatueh of the frontal portion of the splenial. Neither 'Tumer nor Zichen figuresor deserihes its presence. The fissura sublimiea anterior is not shown at all unless. as in Kükenthal's diagram, it is confused with the cruciate.

Posteplenial fiswere.--In Phoea and Callorhinus the tentoriat portion of the splenial terminates in a bifureation, the caudal horizontal hranch of which is ealled the post splenial. This is not the case in my -perimen of the walrus brain. Respecting this resion in the walpus. 'Turner says:

Behind and below the end of the specimen the splenial fissure gave off a pusterohorizontal fissure, which, roming horizontally backward, extenderl atmosi to the posterior border of the hemisphere. * * * The post-splenial fissure of Krung was situated behint the ascending part of the splemial fiswure and ran backwart and upward nearly to the posterior border of the hemisphere below the postero-horizontal fissure. It was separated from the splenial fissure ly the splenial consolution, which is consequently bounded in front by the splenial and behint by the post-splenial fissure.

On the left hemicerebrum of my specimen there is a small fissure 15 millimeters in length whieh eorresponds in position to the posterohorizontal of Turner. (On the right hemicerehrum a mere spur 5 millimeters long from the splenial represents it.

With regard to the post splenial there is fomd on the right hemicerebrum a well-dereloped vertical fisure branching out of the splenial not far from its tentorial origin. This I regard as the post-splenial fissure, although its direction is rertical anc not horizontal. On the left hemicerehrum there is no connection between the splenial and what I regard as the post splenial. The fissifle is not so well developed as that described by Turner. unless in: y specimen it is an interrupted fissure. An mamed bot well-der goped fissure extending dorsally is separated from what I consider the fost splenial by a cortical isthmus of only + millimeters' width. 'Thd "appearances suggest an interrupted fissure. Thrner does not dewirix any commection hetween the post-splenial and splenial fissures. hont calls the interrening space the splenial convolution (gye).

Margimal fiswtre-In Katophos. Pher a and (allorhinus this is a well-developed fisame lying between, at: approximately parallel with. the splenial and medilateral fissures. semes to correspond in many cases with the suprasplenial tissure of a . neg. and in some spectial eases with the combined post and supra sutenial of the same athor. In the wahrus the marginal is not espeemally well dereloped. On both
hemicerebrums there is a fair-sized tissure occupying the proper location. The appearances are very suggestive of those in Monachus, where the fissure is relatively short and undereloped and sometimes appears interrupted. On the left hemicerebrum where the splenial is intermpted there is a fissure dorsal to, and romning parallel with, the callosal portion of the splenial. From its position the name suprasplenial would be very appropriate, although in some rerpects it differs from Krueg's. On the right hemicerebrum it is not represented.

Maryinal gyre.-This, in general. refers to the cortical area lying between the splenial and medilateral fissures, and would therefore include, in the walrus, the dorsal margin of the hemicerebrum, on atecount of the extended development of the medilateral fissure. What I have described as the marginal fissure lies within this gyre. and the name therefore seems appropriate.

Colluteral fissure.-This fissure appears upon the tentorial surface, and is perhaps best seen on the ventral or mesal aspect. Its form is somewhat arched, and it lies ventrally to the origin of the splenial. It hegins not far from the hippocampal, and its termination candally is usually more or less closely associated with either the lateral or medilateral fissure, so that in some cases, at least, it may appear upon the rentro-lateral aspect of the hemicerehrum.

Gemual fiswure. -This is commonly a shallow fissure. lying in front of and is more or less closely associated with the genu of the callosum, from which fact it takes its name. It is found in both hemicerebrums of the walrus. On the left it has a short frontal branch which conneets superficially with an unnamed minor fissure. On the right hemiecrebrum it is farther removed from the genu, and rentrally it fuses with the rostral fissure.

Rostrul fissume. - This is also a shallow fissure and lies nearer to the frontal margin of the hemicerebrum. On the left it is a straight fissure 30 millimeters long. On the right hemicerebrum it is of the same length, and its dorsal end reaches the margin. On account of the convergence of the rostral and genual fissures the basal or ventral thind represents a combination of these two fissures.

The leteral rentricle (purracode). On remoring the dorsal portion of the hemicerehrum just dorsal to the callosum the lateral rentricle is revealed. The cavity dips cephalo-ventrad, ending blindly, to form the preeornu; it also dips caudo-latero-ventrad to form the medicornu. The striatum (caudate nuclens) is a convex and well-defined body forming the most of the floor and lateral side of the precornu. Parallel with the oblique caudal margin of the striatum is the fimbrial margin of the hippocamp, whieh, extending down into the medicornu, forms with the hippocamp the floor of this cavity. Between these two margins (striatum and fimbria) - the rima (great tramsverse fissure), the choroid (para) plexus-a continuation of the velum enters the floor of the medicornu. The rima is narrow and the thalamus does not
appear at all in the floor of the rentricle. A slight wandal projertion of the cavity, at the beginning of the medicormu, extending just beyond the level of the splenial fissure, represents the posteornu. In his dissection of the walrus brain, Turner shows no indiation of a postcormu, but in the text he states: "Where the cavity of the ventricle eurved downward and outward into the horn, an indication of a recess was seen in its posterior horm, but it did not amount to a cormu and there was no elevation which could be called a hippocampus minor." In Ursus there is no postcormu. In Callorhinus a slight caudal spur of the cavity indicates its position. Zalophus was not exammed in this region. In Monachus there is a fairly well-developed postcormu. Murie describes a well-developed postcornu in the Manatee and Otaria, and in both a well-developed hippocampus minor or cellear. In I'uca eitulimu the postcornu is relatively large, and the hippocampus minor is well developed, being correlated with the splenial fissure and making of it, for a portion of its course at least, a total fissure.

Terminology.-A difineulty of some importance is the selection of the terms to be employed in the description of the fissures and gyres, particularly in the brain of the Pinnipedia, where the literature is not especially abundant. The literature on the carnivorons brain is more extensise, but as many anthors have employed terms of their own without reference to the nomenclature used by others, some confusion has naturally resulted. It has therefore seemed best in the present case not to follow the terminology of any one anthor, but to use those terms which, by their special fitness, seemed most appropriate. On this account the priority of terms has not been especially considered. for in some cases later investigations have shown that some of the earlier terms were not the best to use in considering the homologies between the valrious forms.

Some of the more common synonyms of the names of the various fissures used in this article are as follows: The supersylvian is very commonly called the suprasylvian. Turner and Gratiolet have apparently confused this fissure with the lateral in Phoca. I have preferred the term postapersylvian, as used by Krueg. Turner, and others, to postsylvian, as recommended by Owen and Wilder. The term presmpersylvian has been introduced to apply to what is commonly described as the anterior or frontal portion of the supershlyian or the ectosylvia antiea of Ziehen. The superorbital of Flower and Wider is preferred to the intraorbital of 'Turner and Langley. This fismure has also been designated as the presylvian by Krueg and others. The term presylyian has also been applied by some writers to describe what commonly appears to be the coronal fiswre. Cruciate is retained, as is done by most writers, although frontal fissure is the term originally suggested hy Owen. I have also employed the term marginal fissure, as used hy Oweu and Wilder, instead of suprasplenial, as used by Krueg. and Tmener.

SUMMARY．

After obliterating the numerons minor fissures and the branches of the primeipal fissures from the cerebrum of the walrus there is left a very good fisural pattern resembling，in gencral．the typical arrange－ ment of the fissures in the bain of carnisorons amimals．As in the catt．dog．and bear，the presylvian area is greater in length than the postaylyian．In the sea lion the two areas are about equal．In Mon－ achuc．（allorhimus，and Phoca the postsylyian area is longer than the prestian．

The epiphysis is very highly developed in the walrus，and in the seals it is much hetter developed than in carnivora．The olfactory bulbs and peduncles resemble those of the seals and do not attain as relatively great development as in carnivora．The postrhinal resembles the con－ ditions in Zatophins．Callorhinus，and Momaches．The fissure postica resembles that of Crisus，Zatophus，Callorhinus，and Phoca．The supersatvian resembles that of the dog and bear．The postsmersyl－ vian is correlated more closely with that of Zatophus than in any of the other forms studied．The ectolateral，be fusing with the post－ superylian，differs from any of the other forms．The lateral fissure corresponds with Zalophus in that it is relatively short．The ansate fismure resembles the condition found in Zalophus，Ursus，and Canis． The coromal is quite similar to that in Ursus and Zalophus．The medilateral diflers from that of the other forms in that it is interrupted； if considered as at continuous fissure it would be the longest fissure of the brain．The cruciate resembles the conditions found in Phoca and Monaclus．The oplenial aceords more closely with the conditions found in Zalophus and Monachus．The marginal fissure resembles that of Monachoms；it is not especially well developed．The develop－ ment of the postrorm suggests a condition hetween that fomed in Callorthime on the one hand and Monachus on the other．

As a matter of comenience，a table of the more important regions in the reppesentatives of the different groups examined is herewith apperted：

No．	Region．	ITswis．	Cahlorhimes．	Calophas．	Rosmaris．	Monarchus．	Phorea．
1	$\begin{aligned} & \text { sul, ficure } \\ & \text { posticat(?). } \end{aligned}$	1 r	Present	Presell	l＇resent	Notvery distinct．	I＇resent．
2 3	Povtrhimal． 1resuluer	（＇ont inta－ tions of rhinal， くXど1ト tionally posticen． f＇ontinuons	Connerots with pos－ tiea． sometimes	Conncets with pos－ tien． fontinum，	Connerts with pos－ tien． Continuous	Mere trace， very su perficial． connce－ tion with postiea． Continuons．	Continua tion of rhi－ nal． Hisconnect－
4	sylvian．	with su－ persyl－ Viatt．	discoll nected．	（\％ntinlorls．	Cotmimbotis．	Contimuons．	ed.
4	$\begin{gathered} \text { Pos (suluer- } \\ \text { sylyian. } \end{gathered}$	```(%)ntimmons With sm- Persyl- vinul.```	May or may not beeon－ tinuous．	fontimums．	Continlzous．	Mayor may not beeon－ tinleots．	I＇sually con tinuous．

No.	Region.	Ursus.	Callorhinus.	Zalophms	Rosinarus.	Monachus.	Phoca.
5	Precruciate.	Mostly dorsal.	Dorshl	Dorsal	Presence doubtful.	Me:al and dormal.	Not clearly shown.
6	Cruciate.	Dorsa].	Dorsal	Dorsal	Mesal amd dorsal.	Mesal and dor:al.	$\begin{aligned} & \text { Meval and } \\ & \text { dorsal. } \end{aligned}$
7	losipruciate	I'resent.....	Prosent	1'rosen	$\begin{aligned} & \text { Sometimes } \\ & \text { not dis- } \\ & \text { tinet. } \end{aligned}$	Rい1 imentary.	l'reselit.
5	Medilateral.	1'resent....	Iresent.....	Present	Long and diseonnected.	1'resent	A series nf small dis- tiscures.
9	Marginal...	Absent	Present	Present	I'resent	Short, inter rulted fissures.	present.
10	Collateral ..	Absent	Iresent	Rudimentary.	1'resent.	Presint	l'resent.
11	Minor fissures.	Rare.	Quite numerous	Not many .	Numerous .	Quite mumerons.	truite numeroll.
12	"Ursine Lozenge."	Present.	Present	Presesit	t	small......	Absent.
13	Postcornu ..	Absent	Rudimentary.	(?)	Sma	Fair size	Lirrge.
14	$\begin{aligned} & \text { C a l e ar. } \\ & \text { (Hippo- } \\ & \text { campus } \\ & \text { minor.) } \\ & \text { Insula } \end{aligned}$	Absent Slight	Alsent	(?) Slight	Abrent Slight	Indistinct Slight ...	Very distinct. Slight.
16	Pre and post sylvian areas.	Presylvian area longer.	Postsylyian longer.	The two areas ap-proximately equal.	l'resylviam area longer.	Postoylvian longer.	Posteyvian longer.

BIBLIOGRAPHY.

In the preparation of this article I have made free use of the following works:
1899. Fish, P. A. The Brain of the Fur Seal, ete. Report of Fur Seal Investigations, 1896-97. Pt. 3, pp. 21-41; also Journal of Comparative Neurology, V1II, 1898, pp, 57-98.
1899. Flatau and Jacobsomn. Anatomic des Centraherven-Systems, I.
1880. Krueg, Jumus. Ueber die Furchen auf der (àrosshimrinde der zonoplacentalen Sängethiere. Zeitschrift für wissenschaftliche Zoologie, XXXIII, pp. $595-6$ ire. 2
1889. Kйkexthal. Whely, Untersuchungen an Waltieren.
1888. Turner, Sir Whbiam. Brain of Elephant seal, and Wralrus. H. M. S. Chellenger Report, 1873-1876, Zoology, XXVI. I’t. B. pp. S9-134, also Journal of Anatomy. NXV, 15:91, pp. 105-1:3.

1s86. Wilder, B. G.a and Gage, S. II. Amatomical Technology.
1890. Zafien. Theodor. Zur rerglechenden Anatomic der Hirnwindungen mat spezieller Berueksachtigung ler Gehirne ron Crsums maritimus und Trichecus rosmaru*. Anatomseher Anzerger. V. pp. 69:こ-709.

For a more complete bibliography of literature pertaining to the brain of the Carnivora and Pimipedia. consult the work of Flatau and Jacobsohn or Turner's Challenger Report.

ams.	$=$ Ansate fisware	$m 1$.	$=$ Medilateral fissure.
cal.	- Callosim.	per	$=$ Posteruciate fis-mre.
f. ! \%	- Callosal gyre.	$p h$.	$=$ Postero-horizontal fissure.
r.	- Callosal tissure.	mrsp.	$=$ Presplenial fissure.
col.	\pm Collateral fissure.	prss.	= Presupersylvian fissure.
cor.	$=$ Cormal fissure.	$p \times p$ 。	$=$ Postsplenial fissure.
\cdots	$=$ Cruciate fiswure.	pss.	$=$ Postsupersylvian fissure.
\%	= Eitolateral fiswore.	i.	= Rontral tissure.
\%	$=$ Genmal fissure.	so.	$=$ Superorbital fissure.
1.	$=$ Hippocampal tissure.	spl.	= Splenial fissure.
h. \%	$=$ Hippocampal gyre	syl.	=Sylvian fissure.
1.	= Lateral fissure.	ss.	=supersylvian fiswure.
1.9.	= Lateral syre.	syl. g.	= Sytuan gyre.
mury.	= Marginal fiswure.	s.s. y.	= Supersylvian gyre.
m. g .	= Marginal gyre		

Plate NXVill.

Fig. 1. Lateral aspect of the left hemicerebrum of Rosmarus rosmarns. The varions fissures were sommlerl and the numbers represent the depth in millimeters of the fissure at that point.

Fig. 2. Lateral aspect of the right hemicerebrum of Rosmarus rosmarus. The numhers represent the sounding of the fissures as in fig. 1.

Plate NXiN.

Fig. :3. Mesill aspect of the left hemicerebrum of Rosmarns rosmarus.
Fig. f. Mesal ispect of the right hemicerehrm of losmarus rosmerns.

[^0]:

[^1]: "Fish, The Brain of the Fur Seal (Callorhimes ursinus). Keport of the Fur seal Investigation, $1896-97, \mathrm{pt} .3, \mathrm{pp} .21-40$.
 $b_{\text {Anatomischer Anzeiger, }} \mathrm{V}, 1890,1 \mathrm{~m} .692-709$.

[^2]: "Report on the seals collected during the voyage of H. M. S. Challenger, in the years 1873-1876, Zoology, XXVI, 1888, pp. 89-134.

